Saligny site characterization and community confidence building

Daniela Diaconu RATEN ICN Romania

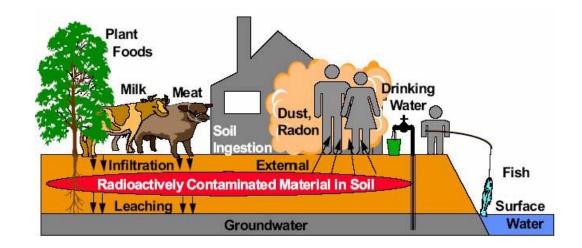
0

Outlines

- Research activities on waste management
- Activity on Saligny site characterisation
- Participation in social science research
- Community concerns regarding LILW disposal at Saligny
- Conclusions

Research activities on waste management

- Waste characterisation
- Treatment and conditioning methods
- Site characterisation and performance assessment
- Deep geological disposal
- Euratom R&D Program on nuclear fission
 - Technical Collaborative projects (CARBWASTE, FORGE, CAST, CEBAMA, CHANCE)
 - Social science research projects (COWAM 2, CIP, IPPA, EAGLE)
- Bilateral Collaboration
 - Los Alamos National Laboratory U
 - CEA France
 - SCK.CEN Belgium



Activitis on Saligny site characterisation

- Focused on safety
 - No danger for the population
 - Annual Individual dose of a resident <0.3mSv/an
 - Direct exposure
 - Inhalation (particles, Ra)
 - Ingestion (foods, meat, milk, fish, and soil)

Effective radiation dose in adults

Comparable to natural

background radiation for:

3 years 7 years

2 years 1 year 3 years 2 years

6 months 3 hours

8 months 16 months

2 years

2 years 6 months 10 days

1 day

4 years 1 year

3 hours

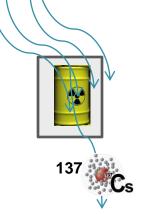
8 years

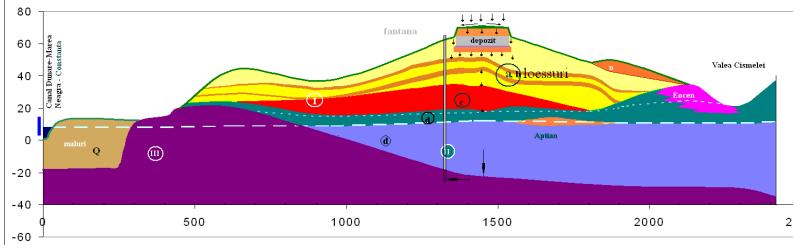
3 hours

7 weeks

What means 0.3 mSv/y?	For this procedure:	* An adult's approximate effective radiation dose is:
	ABDOMINAL REGION:	
	Computed Tomography (CT)-Abdomen and Pelvis	10 mSv
Natural healtenaund	Computed Tomography (CT)-Abdomen and Pelvis,	20 mSv
Natural background:	repeated with and without contrast material	
3mSv/y	Computed Tomography (CT)-Colonography	6 mSv
51115479	Intravenous Pyelogram (IVP)	3 mSv
Abdominal CT:	Radiography (X-ray)-Lower GI Tract	8 mSv
	Radiography (X-ray)-Upper GI Tract	6 mSv
6 – 10 mSv	BONE:	
	Radiography (X-ray)-Spine	1.5 mSv
Mammography :	Radiography (X-ray)-Extremity	0.001 mSv
	CENTRAL NERVOUS SYSTEM:	
0.4mSv	Computed Tomography (CT)-Head	2 mSv
	Computed Tomography (CT)-Head, repeated with and without contrast material	4 mSv
	Computed Tomography (CT)-Spine	6 mSv
	CHEST:	
	Computed Tomography (CT)-Chest	7 mSv
	Computed Tomography (CT)-Lung Cancer Screening	1.5 mSv
	Radiography-Chest	0.1 mSv
	DENTAL:	
	Intraoral X-ray	0.005 mSv
	HEART:	
	Coronary Computed Tomography Angiography (CTA)	12 mSv
	Cardiac CT for Calcium Scoring	3 mSv
	MEN'S IMAGING:	
	Bone Densitometry (DEXA)	0.001 mSv
	NUCLEAR MEDICINE:	
	Positron Emission Tomography – Computed Tomography	25 mSv
	(PET/CT)	
https://www.radiologyinfo.org/en/info.cfm?	WOMEN'S IMAGING:	
pg=safety-xray	Bone Densitometry (DEXA)	0.001 mSv
	Mammography	0.4 mSv

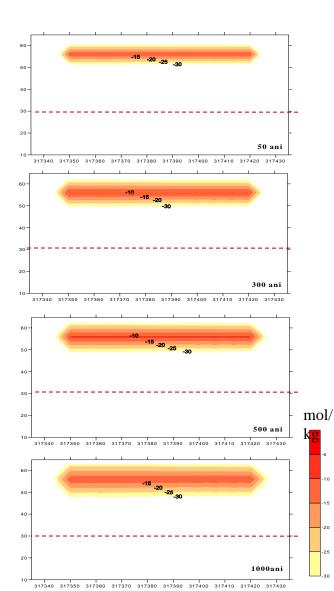
- physical containment:
 - ensured by a waterproof barrier able to isolate the radioactive waste from groundwater; no radionuclides release can occur from the waste form as long as this barrier is effective; it prevents dispersion of radionuclides during the transient initial phase of the repository
- slow release:
 - after containment failure, when groundwater comes in contact with the conditioned waste, leaching of radionuclides from the waste matrix starts in combination with the degradation of the waste matrix; (precipitation, sorption or co-precipitation strongly limit the radionuclide releases into the surrounding layers);
- retardation:
 - the radionuclides dissolved in the groundwater that is in contact with the waste will start to migrate through the buffer materials and the host formation; Low groundwater fluxes in potential host formations, sorbtion on minerals and retardation of the host formation delays the releases and drastically limits the amounts of radionuclides that are released into the biosphere per unit of time;
- dispersion and dilution:
 - once the radionuclides reach the aquifer the dispersion and dilution processes in the aquifers and surface waters will further reduce the radionuclide concentrations in the waters that are directly accessible by man.

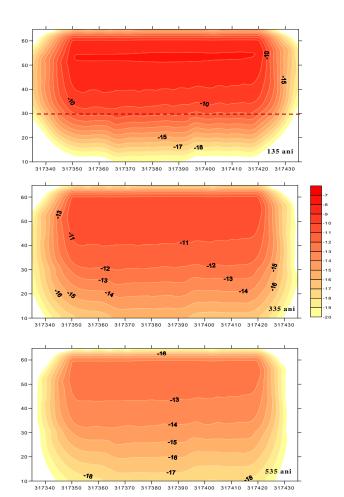



Main safety elements of the Saligny site

- Low precipitation rate
 - Romania: 637 l/a
 - Dobrogea (Cernavoda): 4401/a (over 100 years)
- Thick unsaturated zone : 40m
 - Low water content, small water flow
- Red clay layer: 10 m thick
 - Strong radionuclides retention and very low permeability and
- Aquifer connected to Danube and Canal
 - Dilute the potential radionuclide release

Water - main carrier





Radioactive plumes of Cs-137 and H-3

Maximum impact: 135 years; 25m

Retardation

C-14 release function

2.5e-05 C-14 release from 2.0e-05 repository 1.5e-05 (JVr) Maxim: 725yr 1.0e-05 5.0e-06 1.0e04 2.0e04 3.0e04 4.0e04 5.0e04 6.0e04 7.0e04 8.0e04 9.0e04 1.0e05 0 4.0e-07 C-14 release from 3.0e-07 unsaturated zone Maxim: 23718 yr Ê 2.0e-07 1.0e-07

e04 4.0e04

5.0e04

Time (yr)

6.0e04

7.0e04

8.0e04

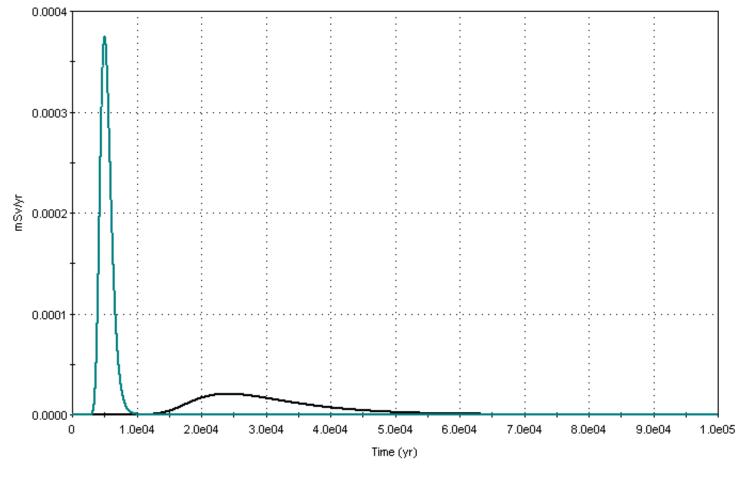
9.0e04

1.0e05

3.0e04

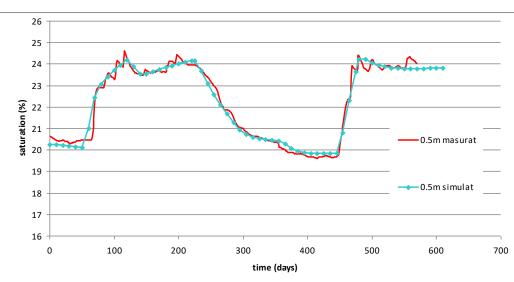
1.0e04

0

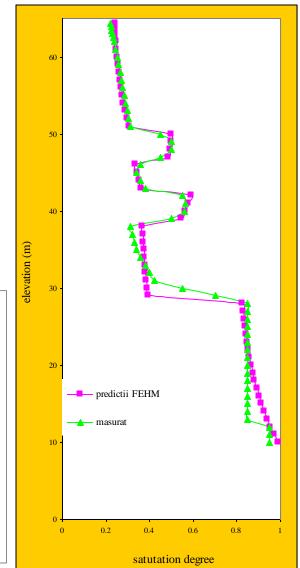

2.0e04

Annual individual dose

Annual dose received by consumer as a follow of drinking water from the contaminated well



AnnualC14Dose	Annuali129Dose
---------------	----------------



Confidence in simulations?

- Calculations are based on large statistic of site specific data
- Predictions are validated by comparison with independent in-field measurements
 - Moisture profiles
 - Time variation moisture content
 - Tracer tests

Activities in social science

Cowam In Practice

- Cooperative Research on the Governance of Radioactive Waste Management (2004-2006)
 - CIP COWAM In Practice (2007-2009)
- Implementing Public Participation Approaches (2010-2013)
- Enhancing Education, Training and communication process for informed behaviour and decission making related to ionizing radioation risks - (2013-2016)

... together with all Romanian stakeholders in waste management!!!

Public participation

- Understanding
 - **Principles**
 - **Methods**
 - Challenges
- Practicing
 - Identify the players in RWM
 - Create a structure
 - Learn and discuss the decision making

Preparing public participation

National Stakeholders Group – NSG

- created in 2007 ; extended in 2011; chaired by Cernavoda Mayor
- AN&DR
- Cernavoda NPP
- **CNCAN observer**
- Environment and Health Agencies
- Mayors of Cernavoda and Saligny;
- Local councilors
- Local NGOs: AGIA, SIDO, UP, ADAPT - Cernavoda, Mare Nostrum Constanta)
- National NGOs: ARIN, Terra Millenium III)
- RATEN ICN mediator
- 15 meetings 2007 2013

Input from the Methodological Task Force

Topics of concern

- Local Committee for Cernavoda-Saligny Zone
- Environmental and health monitoring near nuclear facilities
- **Community benefits**

0

Local development needs and nuclear development in Cernavoda area

Evaluation of public participation methods

Methods

(M1) Citizen juries;
(M2) Consensus conferences;
(M3) Scenario workshops;
(M4) Focus-groups;
(M5) Partnerships;
(M6) Referendum;
(M7) Panel debates;
(M8) Consensus construction exercise;

(M9) Public consultation meetings;

(MI0) Web-sites with feedback;

(MII) Web-sites without feedback;

(MI2) Open days;

- (MI3) Questionnaires investigations;
- (MI4) Presentation meetings;

(MI5) Dissemination of booklets, posters, sheets, etc

Arnstein (1969) Ladder of citizen participation

Criteria applied

- existing experience and methodological support;
- experience of the public & participatory level of the public; resources to be involved;
- time constraint;
- local context

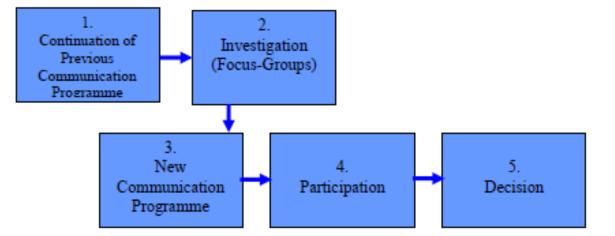
Investigating Community views on LILW disposal at Saligny

Focus groups – February 2013

- Group 1 local decision-makers
- Group 2 public opinion vectors
- Group 3 common citizens

Topics of discussion:

- Perception on the siting process
- Importance of the investment for the community; expectations
- Concerns of local authorities/public/citizens
- Recommendations for the evolution of the process



Outcomes of the focus groups

- LILW disposal safer solution to the current storage; built at high safety standards
- Positive impacts:
 - contribution to the budget;
 - increased visibility;
 - stimulus for an improved education of youngsters
- Needs:
 - constant information;
 - continuous dialogue and collaboration with

implementer and designer

Steps wise approach for public involvement in the Saligny project

Steps wise approach for public involvement in the Saligny project

Conclusions

- Particularities and hydro-geological characteristics of the Saligny site make it an environment able to host the repository in safe conditions; together, repository design and site itself are fulfilling the regulatory safety requirements;
- Repository should be harmonized with the social environment too; to fulfill the social requirements, community involvement in decision process is the key element.
- Active collaboration of the implementer and designer should be establish taking benefit of the openness of local community; a participatory method adapted to the national and local context should be agreed between these actors.

Many thanks for your attention!